ZUR FRAGE DES EINSTUFIGEN ODER MEHRSTUFIGEN VERLAUFS DER AZOALKANTHERMOLYSE

von J. Hinz, A. Oberlinner und C. Rüchardt

Organisch-Chemisches Institut der Universität Münster

(Received in Germany 22 March 1973; received in UK for publication 19 April 1973)

Die Frage, ob Azoalkane \underline{l} bei der Thermolyse einstufig homolytisch fragmentieren (A) oder zweistufig über intermediäre Diazenylradikale zerfallen (B) ist wieder in den Blickpunkt des Interesses getreten¹⁻⁴⁾.

Das von Ramsperger zur Unterscheidung vorgeschlagene Kriterium⁵⁾, die Thermolysegeschwindigkeiten der unsymmetrischen Azoverbindungen <u>1</u> (R**+**R') und die der entsprechenden symmetrischen Azoverbindungen R-N=N-R und R'-N=N-R' zu vergleichen, wurde bis vor kurzem³⁻⁴⁾ nur an einem Beispiel verwendet⁵⁾, das jüngst kritisiert wurde⁴⁾.

Bei einigen unsymmetrischen Azoalkanen $\underline{1}$ mit stark unterschiedlicher Bindungsenergie der beiden C-N-Bindungen wurde durch Messung kinetischer Isotopieeffekte^{4,6)}, CIDNP-Messungen²⁾, Feststellung von Isomerisierung⁷⁾ oder Razemisierung⁸⁾ der Azoverbindung im Zuge der Thermolyse bzw. Photolyse oder durch den Einfluss der Solvensviskosität auf die Thermolysekonstanten der zweistufige Zerfall B nachgewiesen. Auch das Kriterium von Ramsperger⁵⁾ zeigte bei stark unsymmetrischen Azoalkanen $\underline{1}$ (R=Alkyl; R'=Allyl⁴⁾ oder 1-Cyanalkyl³⁾), dass deren Aktivierungsenergien der Thermolyse mit den Aktivierungsenergien der Thermolyse der labileren entsprechenden symmetrischen Azoverbindungen (Diallylazoverbindungen bzw. Azonitrile) weit besser übereinstimmen, als mit den Aktivierungsenergien der stabileren symmetrischen Azoalkane $\underline{1}$ (R=R'=Alkyl). Thermochemische Rechnungen⁴⁾ legten nahe, dass der zweistufige Zerfall B womöglich auch für symmetrische Azoalkane $\underline{1}$ (R=R'=Alkyl) der Normalfall ist und die homolytische Fragmentierung A der Ausnahmefall.

Unsere Ergebnisse mit symmetrischen und unsymmetrischen Brückenkopf-azoalkanen⁹⁾ sprechen für das Gegenteil. Über weitere Beispiele der allgemeinen Struktur

α-Cumyl-N=N-t.-Alkyl Phenyl-N=N-t.-Alkyl l-Norbornyl-N=N-t.-Alkyl 1975 berichtet <u>Tab. 1</u>. Es zeigt sich, dass die Zerfallskonstanten der unsymmetriachen Azoverbindungen <u>1</u> durchwegs zwischen denen der entsprechenden symmetrischen Azoalkane liegen. Die Grössenordnung dieses Effekts, der nach dem Kriterium von Ramsperger für einen Fragmentierungsmechanismus A spricht, zeigt <u>Tab. 2</u>. Wenn auch die Messungen nach Methode A¹⁰⁾ nicht die gleiche Präzision, wie die von Crawford und Mitarbeitern in der Gasphase durchgeführten⁴⁾ besitzen und bei den Hochtemperaturthermolysen induzierter Zerfall nicht völlig ausscheidet¹⁹⁾ so halten wir die Übereinstimmung des Ramsperger-Kriteriums in allen Beispielen doch für eine starke Stütze des Fragmentierungsmechanismus der tert.-Azoalkane.

Azover	bindung A	Azoverbi	ndung B	^k A∕k ^B	тос
R &-Cumyl &-Cumyl	R' ط-Cumyl tAlkyl	R &-Cumyl tAlkyl	R' tAlkyl tAlkyl	1.1-6.3·10 ² 1.8-4.6·10 ³	80 200
tAlkyl	tAlkyl	tAlkyl	Phenyl	0.9-1.6.10 ⁴ 1.5.10 ³	200 300
tAlkyl tAlkyl	tAlkyl l-Norbornyl	t.~Alkyl l-Norbornyl	l-Norbornyl l-Norbornyl	0.9-24·10 ² 3.0-7.3·10 ⁴	200 200

Tab. 2 Verhältnisse der Zerfallskonstanten symmetrischer und unsymmetrischer Azoalkane R-N=N-R'

Dieses Resultat wird gestützt durch den Vergleich der Abhängigkeit der Zerfallskonstanten symmetrischer und unsymmetrischer cyclischer Azoalkane von der Ringgrösse¹²⁾. Auch das ungewöhnlich grosse Geschwindigkeitsverhältnis des Zerfalls exo/endo-isomerer symmetrischer Azo-2-norbornane im Vergleich zu den unsymmetrischen (vgl. Tab. 1 No. 6 und 8 oder 14 und 15) lässt sich mit Hilfe des Torsionseffektes von Schleyer²⁰⁾ nur durch einen Fragmentierungsmechanismus A sinnvoll deuten.

$$R = CH_3 \quad k_{exo}/k_{endo} = 68.5 \quad (200^{\circ})^{17}$$

$$R = C_6H_5 \quad k_{exo}/k_{endo} = 474 \quad (60^{\circ})^{16}$$

$$R$$

Tab. 1 Extrapolierte The	rmolysekonstanten symm	netrischer u	unsymmeti	cischer A:	soalkane I	R-N=N-R'	
No	ж.	10 ⁴ k ₁ (80 ⁰) sec ⁻¹	k ₁ (200 ⁰) sec ⁻¹	ΔH + kcal/Mol	ΔS [‡] Clausius	Messbereich o _C	Solvens
1 ¹⁵⁾ α-Cumy1	a-Cumy1	20.63		28.8	10.5	51-71	Xthylbenzol ^{d)}
212) a-Cumyl	1-Methy1-cyclopenty1	0.177	2.07	31.5	8.5	88-118	tButylbenzol ^d
312) 1-Methyl-cyclopentyl	1-Methyl-cyclopentyl	1	11.5.10 ⁻⁴	;	;	200	Benzol ^{e)}
412) a-Cumyl	1-Methy1-cyclohexy1	0.180	1.95	31.2	œ	102-122	tButylbenzol ^d
5 ¹²⁾ I-Methyl-cyclohexyl	1-Methy1-cyclohexy1	ł	4.20.10 ⁻⁴	1	1	200	Benzol ^{e)}
6 ¹⁶⁾ α-Cumyl	endo-2MN ^a)	0.033	0.61	32.8	6	100-124	tButylbenzol ^d
717) endo-2MN ^a)	endo-2MN ^{a)}	1	0.31.10 ⁻⁴	!	1	200	Benzol ^{e)}
8 ¹⁶⁾ a-Cumyl	exo-2MN ^{b)}	0.189	5.6	33.7	15	96-116	tButylbenzol ^d
9 ¹⁷⁾ exo-2MN ^{b)}	exo-2MN ^b)	ł	21.1.10 ⁻⁴	}	ł	200	Benzol ^{e)}
10 ¹⁸⁾ tButyl	tButyl	ŀ	8.38•10 ⁻⁴	43.7	17	180-210	Benzol ^{e)}
tButyl	tButyl	1	1.57 ^{c)}				
11 ¹⁴⁾ Phenyl	tBtuyl	}	1.06.10 ^{-3c)}	1	ł	300	Benzol ^{e)}
12 ¹²⁾ Phenyl	1-Methy1-cyglopenty1	1	7.1.10 ⁻⁸	51.3	16	280-300	Benzol ^{e)}
13 ¹²⁾ Phenyl	1-Methy1-cyclohexy1	}	4.8.10 ⁻⁸	51.5	16	280-300	Benzol ^{e)}
14 ¹⁶⁾ endo-2MN ^{a)}	1-Norborny1	1	3.6.10 ⁻⁷	47.6	12	260-280	Benzol ^{e)}
1516) _{exo-2MN} b)	1-Norborny1		8.8.10 ⁻⁷	48.8	16	230-250	Benzol ^{e)}
16 ¹⁴⁾ tButyl	1-Norborny1	1	7.9.10 ⁻⁷	48.3	15	255-280	Benzol ^{e)}
17 ¹⁴ , 1-Norbornyl	1-Norborn y i		1.2.10 ⁻¹¹	53.8	6	354-381	Benzol ^{e)}
A a) endo-2MN=	CH ₃ b) exo-2MI=H	c) bei 30	00 ⁰ d) ^k	fethode B ¹	° (0]	e) Methode A	10)

Extrapolierte Thermolysekonstanten symmetrischer und unsymmetrischer Azoalkane R-N=N-R'

No. 22

4

Es ist jedoch nicht anzunehmen, dass bei der Thermolyse unsymmetrische Azoalkane <u>l</u> beide C-N-Bindungen völlig gleichmässig gedehnt werden. Je nach deren unterschiedlicher Bindungsstärke muss mit einer synchron aber nicht gleichmässig erfolgenden Fragmentierung gerechnet werden, wie bei der Peresterfragmentierung⁹⁾ und im Extremfall mit dem zweistufigen Weg B.

Der Deutschen-Forschungsgemeinschaft, dem Landesamt für Forschung Düsseldorf und dem Fonds der Chemischen Industrie danken wir für die Förderung dieser Arbeit.

- 1) W.A. PRYOR und K. SMITH, J. Amer. Chem. Soc. 92, 5403 (1970)
- 2) N.A. PORTER, L.J. MARNETT, C.H. LOCHMÜLLER, G.L. CLOSS u. M. SHOBATAKI, J. Amer. Chem. Soc. 94, 3664 (1972) und zit. Lit.
- 3) M. PROCHAZKA, O. RYBA und D. LIU, Collect. Czech. Commun. 36, 2640 (1971)
- 4) R.J. CRAWFORD, u. K. TAKAGAKI, J. Amer. Chem. Soc. 94, 7406 (1972)
- 5) H.C. RAMSPERGER, J. Amer. Chem. Soc. 51, 2134 (1929)
- 6) S. SELTZER, J. Amer. Chem. Soc. 83, 2625 (1961); 85, 14 (1963)
- 7) N.A. PORTER, M.P. ILOFF, Chem. Commun. 1971, 1575
- 8) N.A. PORTER, M.E. LANDIS, L.J. MURNETT, J. Amer. Chem. Soc. 93, 795 (1971)
- 9) C. RÜCHARDT, H.-D. BECKHAUS, J. BONNEKESSEL, H. BÖCK, E. DEMPEWOLF, F.A. GROEGER, V. GOLZKE, G. HAMPRECHT, K. HERWIG, J. HINZ, P. LORENZ, I. MAYER-RUTHARDT, J. MÜLLER, A. OBERLINNER und E. SCHACHT, XXIII. International Congress of Pure Applied Chemistry, Vol. 4, p. 223, Butterworths, London 1971.
- 10) Die Kinetik wurde entweder UV-spektroskopisch gemessen^{11,12} (Methode B) oder gaschromatographisch mit der Mikroampullentechnik^{12,13,14}) (Methode A). Extrapoliert wurde mit dem Rechenprogramm ARHEY I.
- 11) S.F. NELSON und P.D. BARTLETT, J. Amer. Chem. Soc. <u>88</u>, 137 (1966)
- 12) J. HINZ und C. RÜCHARDT, Liebigs Ann. Chem. 1973, im Druck T.R. LYNCH, F.M. McLACHLAN und J.L. SUSCHITZKY, Can. J. Chem. 1973, im Druck
- 13) A. OBERLINNER und C. RÜCHARDT, Tetrahedron Letters 1969, 4685
- 14) Dissertation A. OBERLINNER, Univ. Münster 1970
- 15) Vergleichswerte in Lit. 11
- 16) Dissertation J. HINZ, Univ. Münster 1972
- 17) J. HINZ, C. RÜCHARDT, Tetrahedron Letters 1970, 3095
- 18) J.B. LEVY und B.K.W. COPELAND, J. Amer. Chem. Soc. <u>84</u>, 2922 (1962) finden in der Gasphase $k_1^{200^\circ} = 3.96 \cdot 10^{-4}$
- 19) D.F. MCMILLEN, D.M. GOLDEN und S.W. BENSON, J. Amer. Chem. Soc. <u>94</u>, 4403 (1972)
- 20) P.v.R. SCHLEYER, J. Amer. Chem. Soc. <u>89</u>, 699, 701 (1967)
 P.D. BARTLETT, Acc. Chem. Research <u>3</u>, 177 (1970)